Note

Arb was merged into FLINT in 2023.

The documentation on arblib.org will no longer be updated.

See the FLINT documentation instead.


mag.h – fixed-precision unsigned floating-point numbers for bounds

The mag_t type holds an unsigned floating-point number with a fixed-precision mantissa (30 bits) and an arbitrary-precision exponent (represented as an fmpz_t), suited for representing magnitude bounds. The special values zero and positive infinity are supported, but not NaN.

Operations that involve rounding will always produce a valid upper bound, or a lower bound if the function name has the suffix lower. For performance reasons, no attempt is made to compute the best possible bounds: in general, a bound may be several ulps larger/smaller than the optimal bound. Some functions such as mag_set() and mag_mul_2exp_si() are always exact and therefore do not require separate lower versions.

A common mistake is to forget computing a lower bound for the argument of a decreasing function that is meant to be bounded from above, or vice versa. For example, to compute an upper bound for \((x+1)/(y+1)\), the parameter x should initially be an upper bound while y should be a lower bound, and one should do:

mag_add_ui(tmp1, x, 1);
mag_add_ui_lower(tmp2, y, 1);
mag_div(res, tmp1, tmp2);

For a lower bound of the same expression, x should be a lower bound while y should be an upper bound, and one should do:

mag_add_ui_lower(tmp1, x, 1);
mag_add_ui(tmp2, y, 1);
mag_div_lower(res, tmp1, tmp2);

Applications requiring floating-point arithmetic with more flexibility (such as correct rounding, or higher precision) should use the arf_t type instead. For calculations where a complex alternation between upper and lower bounds is necessary, it may be cleaner to use arb_t arithmetic and convert to a mag_t bound only in the end.

Types, macros and constants

type mag_struct

A mag_struct holds a mantissa and an exponent. Special values are encoded by the mantissa being set to zero.

type mag_t

A mag_t is defined as an array of length one of type mag_struct, permitting a mag_t to be passed by reference.

Memory management

void mag_init(mag_t x)

Initializes the variable x for use. Its value is set to zero.

void mag_clear(mag_t x)

Clears the variable x, freeing or recycling its allocated memory.

void mag_swap(mag_t x, mag_t y)

Swaps x and y efficiently.

mag_ptr _mag_vec_init(slong n)

Allocates a vector of length n. All entries are set to zero.

void _mag_vec_clear(mag_ptr v, slong n)

Clears a vector of length n.

slong mag_allocated_bytes(const mag_t x)

Returns the total number of bytes heap-allocated internally by this object. The count excludes the size of the structure itself. Add sizeof(mag_struct) to get the size of the object as a whole.

Special values

void mag_zero(mag_t res)

Sets res to zero.

void mag_one(mag_t res)

Sets res to one.

void mag_inf(mag_t res)

Sets res to positive infinity.

int mag_is_special(const mag_t x)

Returns nonzero iff x is zero or positive infinity.

int mag_is_zero(const mag_t x)

Returns nonzero iff x is zero.

int mag_is_inf(const mag_t x)

Returns nonzero iff x is positive infinity.

int mag_is_finite(const mag_t x)

Returns nonzero iff x is not positive infinity (since there is no NaN value, this function is exactly the logical negation of mag_is_inf()).

Assignment and conversions

void mag_init_set(mag_t res, const mag_t x)

Initializes res and sets it to the value of x. This operation is always exact.

void mag_set(mag_t res, const mag_t x)

Sets res to the value of x. This operation is always exact.

void mag_set_d(mag_t res, double x)
void mag_set_fmpr(mag_t res, const fmpr_t x)
void mag_set_ui(mag_t res, ulong x)
void mag_set_fmpz(mag_t res, const fmpz_t x)

Sets res to an upper bound for \(|x|\). The operation may be inexact even if x is exactly representable.

void mag_set_d_lower(mag_t res, double x)
void mag_set_ui_lower(mag_t res, ulong x)
void mag_set_fmpz_lower(mag_t res, const fmpz_t x)

Sets res to a lower bound for \(|x|\). The operation may be inexact even if x is exactly representable.

void mag_set_d_2exp_fmpz(mag_t res, double x, const fmpz_t y)
void mag_set_fmpz_2exp_fmpz(mag_t res, const fmpz_t x, const fmpz_t y)
void mag_set_ui_2exp_si(mag_t res, ulong x, slong y)

Sets res to an upper bound for \(|x| \cdot 2^y\).

void mag_set_d_2exp_fmpz_lower(mag_t res, double x, const fmpz_t y)
void mag_set_fmpz_2exp_fmpz_lower(mag_t res, const fmpz_t x, const fmpz_t y)

Sets res to a lower bound for \(|x| \cdot 2^y\).

double mag_get_d(const mag_t x)

Returns a double giving an upper bound for x.

double mag_get_d_log2_approx(const mag_t x)

Returns a double approximating \(\log_2(x)\), suitable for estimating magnitudes (warning: not a rigorous bound). The value is clamped between COEFF_MIN and COEFF_MAX.

void mag_get_fmpr(fmpr_t res, const mag_t x)

Sets res exactly to x.

void mag_get_fmpq(fmpq_t res, const mag_t x)
void mag_get_fmpz(fmpz_t res, const mag_t x)
void mag_get_fmpz_lower(fmpz_t res, const mag_t x)

Sets res, respectively, to the exact rational number represented by x, the integer exactly representing the ceiling function of x, or the integer exactly representing the floor function of x.

These functions are unsafe: the user must check in advance that x is of reasonable magnitude. If x is infinite or has a bignum exponent, an abort will be raised. If the exponent otherwise is too large or too small, the available memory could be exhausted resulting in undefined behavior.

Comparisons

int mag_equal(const mag_t x, const mag_t y)

Returns nonzero iff x and y have the same value.

int mag_cmp(const mag_t x, const mag_t y)

Returns negative, zero, or positive, depending on whether x is smaller, equal, or larger than y.

int mag_cmp_2exp_si(const mag_t x, slong y)

Returns negative, zero, or positive, depending on whether x is smaller, equal, or larger than \(2^y\).

void mag_min(mag_t res, const mag_t x, const mag_t y)
void mag_max(mag_t res, const mag_t x, const mag_t y)

Sets res respectively to the smaller or the larger of x and y.

Input and output

void mag_print(const mag_t x)

Prints x to standard output.

void mag_fprint(FILE *file, const mag_t x)

Prints x to the stream file.

char *mag_dump_str(const mag_t x)

Allocates a string and writes a binary representation of x to it that can be read by mag_load_str(). The returned string needs to be deallocated with flint_free.

int mag_load_str(mag_t x, const char *str)

Parses str into x. Returns a nonzero value if str is not formatted correctly.

int mag_dump_file(FILE *stream, const mag_t x)

Writes a binary representation of x to stream that can be read by mag_load_file(). Returns a nonzero value if the data could not be written.

int mag_load_file(mag_t x, FILE *stream)

Reads x from stream. Returns a nonzero value if the data is not formatted correctly or the read failed. Note that the data is assumed to be delimited by a whitespace or end-of-file, i.e., when writing multiple values with mag_dump_file() make sure to insert a whitespace to separate consecutive values.

Random generation

void mag_randtest(mag_t res, flint_rand_t state, slong expbits)

Sets res to a random finite value, with an exponent up to expbits bits large.

void mag_randtest_special(mag_t res, flint_rand_t state, slong expbits)

Like mag_randtest(), but also sometimes sets res to infinity.

Arithmetic

void mag_add(mag_t res, const mag_t x, const mag_t y)
void mag_add_ui(mag_t res, const mag_t x, ulong y)

Sets res to an upper bound for \(x + y\).

void mag_add_lower(mag_t res, const mag_t x, const mag_t y)
void mag_add_ui_lower(mag_t res, const mag_t x, ulong y)

Sets res to a lower bound for \(x + y\).

void mag_add_2exp_fmpz(mag_t res, const mag_t x, const fmpz_t e)

Sets res to an upper bound for \(x + 2^e\).

void mag_add_ui_2exp_si(mag_t res, const mag_t x, ulong y, slong e)

Sets res to an upper bound for \(x + y 2^e\).

void mag_sub(mag_t res, const mag_t x, const mag_t y)

Sets res to an upper bound for \(\max(x-y, 0)\).

void mag_sub_lower(mag_t res, const mag_t x, const mag_t y)

Sets res to a lower bound for \(\max(x-y, 0)\).

void mag_mul_2exp_si(mag_t res, const mag_t x, slong y)
void mag_mul_2exp_fmpz(mag_t res, const mag_t x, const fmpz_t y)

Sets res to \(x \cdot 2^y\). This operation is exact.

void mag_mul(mag_t res, const mag_t x, const mag_t y)
void mag_mul_ui(mag_t res, const mag_t x, ulong y)
void mag_mul_fmpz(mag_t res, const mag_t x, const fmpz_t y)

Sets res to an upper bound for \(xy\).

void mag_mul_lower(mag_t res, const mag_t x, const mag_t y)
void mag_mul_ui_lower(mag_t res, const mag_t x, ulong y)
void mag_mul_fmpz_lower(mag_t res, const mag_t x, const fmpz_t y)

Sets res to a lower bound for \(xy\).

void mag_addmul(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(z + xy\).

void mag_div(mag_t res, const mag_t x, const mag_t y)
void mag_div_ui(mag_t res, const mag_t x, ulong y)
void mag_div_fmpz(mag_t res, const mag_t x, const fmpz_t y)

Sets res to an upper bound for \(x / y\).

void mag_div_lower(mag_t res, const mag_t x, const mag_t y)

Sets res to a lower bound for \(x / y\).

void mag_inv(mag_t res, const mag_t x)

Sets res to an upper bound for \(1 / x\).

void mag_inv_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(1 / x\).

Fast, unsafe arithmetic

The following methods assume that all inputs are finite and that all exponents (in all inputs as well as the final result) fit as fmpz inline values. They also assume that the output variables do not have promoted exponents, as they will be overwritten directly (thus leaking memory).

void mag_fast_init_set(mag_t x, const mag_t y)

Initialises x and sets it to the value of y.

void mag_fast_zero(mag_t res)

Sets res to zero.

int mag_fast_is_zero(const mag_t x)

Returns nonzero iff x to zero.

void mag_fast_mul(mag_t res, const mag_t x, const mag_t y)

Sets res to an upper bound for \(xy\).

void mag_fast_addmul(mag_t z, const mag_t x, const mag_t y)

Sets z to an upper bound for \(z + xy\).

void mag_fast_add_2exp_si(mag_t res, const mag_t x, slong e)

Sets res to an upper bound for \(x + 2^e\).

void mag_fast_mul_2exp_si(mag_t res, const mag_t x, slong e)

Sets res to an upper bound for \(x 2^e\).

Powers and logarithms

void mag_pow_ui(mag_t res, const mag_t x, ulong e)
void mag_pow_fmpz(mag_t res, const mag_t x, const fmpz_t e)

Sets res to an upper bound for \(x^e\).

void mag_pow_ui_lower(mag_t res, const mag_t x, ulong e)
void mag_pow_fmpz_lower(mag_t res, const mag_t x, const fmpz_t e)

Sets res to a lower bound for \(x^e\).

void mag_sqrt(mag_t res, const mag_t x)

Sets res to an upper bound for \(\sqrt{x}\).

void mag_sqrt_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(\sqrt{x}\).

void mag_rsqrt(mag_t res, const mag_t x)

Sets res to an upper bound for \(1/\sqrt{x}\).

void mag_rsqrt_lower(mag_t res, const mag_t x)

Sets res to an lower bound for \(1/\sqrt{x}\).

void mag_hypot(mag_t res, const mag_t x, const mag_t y)

Sets res to an upper bound for \(\sqrt{x^2 + y^2}\).

void mag_root(mag_t res, const mag_t x, ulong n)

Sets res to an upper bound for \(x^{1/n}\).

void mag_log(mag_t res, const mag_t x)

Sets res to an upper bound for \(\log(\max(1,x))\).

void mag_log_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(\log(\max(1,x))\).

void mag_neg_log(mag_t res, const mag_t x)

Sets res to an upper bound for \(-\log(\min(1,x))\), i.e. an upper bound for \(|\log(x)|\) for \(x \le 1\).

void mag_neg_log_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(-\log(\min(1,x))\), i.e. a lower bound for \(|\log(x)|\) for \(x \le 1\).

void mag_log_ui(mag_t res, ulong n)

Sets res to an upper bound for \(\log(n)\).

void mag_log1p(mag_t res, const mag_t x)

Sets res to an upper bound for \(\log(1+x)\). The bound is computed accurately for small x.

void mag_exp(mag_t res, const mag_t x)

Sets res to an upper bound for \(\exp(x)\).

void mag_exp_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(\exp(x)\).

void mag_expinv(mag_t res, const mag_t x)

Sets res to an upper bound for \(\exp(-x)\).

void mag_expinv_lower(mag_t res, const mag_t x)

Sets res to a lower bound for \(\exp(-x)\).

void mag_expm1(mag_t res, const mag_t x)

Sets res to an upper bound for \(\exp(x) - 1\). The bound is computed accurately for small x.

void mag_exp_tail(mag_t res, const mag_t x, ulong N)

Sets res to an upper bound for \(\sum_{k=N}^{\infty} x^k / k!\).

void mag_binpow_uiui(mag_t res, ulong m, ulong n)

Sets res to an upper bound for \((1 + 1/m)^n\).

void mag_geom_series(mag_t res, const mag_t x, ulong N)

Sets res to an upper bound for \(\sum_{k=N}^{\infty} x^k\).

Special functions

void mag_const_pi(mag_t res)
void mag_const_pi_lower(mag_t res)

Sets res to an upper (respectively lower) bound for \(\pi\).

void mag_atan(mag_t res, const mag_t x)
void mag_atan_lower(mag_t res, const mag_t x)

Sets res to an upper (respectively lower) bound for \(\operatorname{atan}(x)\).

void mag_cosh(mag_t res, const mag_t x)
void mag_cosh_lower(mag_t res, const mag_t x)
void mag_sinh(mag_t res, const mag_t x)
void mag_sinh_lower(mag_t res, const mag_t x)

Sets res to an upper or lower bound for \(\cosh(x)\) or \(\sinh(x)\).

void mag_fac_ui(mag_t res, ulong n)

Sets res to an upper bound for \(n!\).

void mag_rfac_ui(mag_t res, ulong n)

Sets res to an upper bound for \(1/n!\).

void mag_bin_uiui(mag_t res, ulong n, ulong k)

Sets res to an upper bound for the binomial coefficient \({n \choose k}\).

void mag_bernoulli_div_fac_ui(mag_t res, ulong n)

Sets res to an upper bound for \(|B_n| / n!\) where \(B_n\) denotes a Bernoulli number.

void mag_polylog_tail(mag_t res, const mag_t z, slong s, ulong d, ulong N)

Sets res to an upper bound for

\[\sum_{k=N}^{\infty} \frac{z^k \log^d(k)}{k^s}.\]

The bounding strategy is described in Algorithms for polylogarithms. Note: in applications where \(s\) in this formula may be real or complex, the user can simply substitute any convenient integer \(s'\) such that \(s' \le \operatorname{Re}(s)\).

void mag_hurwitz_zeta_uiui(mag_t res, ulong s, ulong a)

Sets res to an upper bound for \(\zeta(s,a) = \sum_{k=0}^{\infty} (k+a)^{-s}\). We use the formula

\[\zeta(s,a) \le \frac{1}{a^s} + \frac{1}{(s-1) a^{s-1}}\]

which is obtained by estimating the sum by an integral. If \(s \le 1\) or \(a = 0\), the bound is infinite.