Note

Arb was merged into FLINT in 2023.

The documentation on arblib.org will no longer be updated.

See the FLINT documentation instead.


Example programs

The examples directory (https://github.com/fredrik-johansson/arb/tree/master/examples) contains several complete C programs, which are documented below. Running:

make examples

will compile the programs and place the binaries in build/examples.

pi.c

This program computes \(\pi\) to an accuracy of roughly n decimal digits by calling the arb_const_pi() function with a working precision of roughly \(n \log_2(10)\) bits.

Sample output, computing \(\pi\) to one million digits:

> build/examples/pi 1000000
precision = 3321933 bits... cpu/wall(s): 0.243 0.244
virt/peak/res/peak(MB): 24.46 30.44 8.73 14.42
[3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]

The program prints an interval guaranteed to contain \(\pi\), and where all displayed digits are correct up to an error of plus or minus one unit in the last place (see arb_printn()). By default, only the first and last few digits are printed. Pass 0 as a second argument to print all digits (or pass m to print m + 1 leading and m trailing digits, as above with the default m = 20).

The program can optionally compute various other constants, and can use multiple threads:

> build/examples/pi 1000000 -threads 4
precision = 3321933 bits... cpu/wall(s): 0.265 0.147
virt/peak/res/peak(MB): 241.95 422.15 13.33 17.54
[3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]
> build/examples/pi 1000000 -constant e
precision = 3321933 bits... cpu/wall(s): 0.09 0.09
virt/peak/res/peak(MB): 25.56 29.19 9.58 13.11
[2.71828182845904523536{...999959 digits...}01379817644769422819 +/- 1.39e-1000000]

zeta_zeros.c

This program computes one or several consecutive zeros of the Riemann zeta function on the critical line:

> build/examples/zeta_zeros -n 1 -count 10 -digits 30
1   14.1347251417346937904572519836
2   21.0220396387715549926284795939
3   25.0108575801456887632137909926
4   30.4248761258595132103118975306
5   32.9350615877391896906623689641
6   37.5861781588256712572177634807
7   40.9187190121474951873981269146
8   43.3270732809149995194961221654
9   48.0051508811671597279424727494
10  49.7738324776723021819167846786
cpu/wall(s): 0.01 0.01
virt/peak/res/peak(MB): 21.28 21.28 7.29 7.29

Five zeros starting with the millionth:

> build/examples/zeta_zeros -n 1000000 -count 5 -digits 20
1000000     600269.67701244495552
1000001     600270.30109071169866
1000002     600270.74787059436613
1000003     600271.48637367364820
1000004     600271.76148042593778
cpu/wall(s): 0.03 0.03
virt/peak/res/peak(MB): 21.41 21.41 7.41 7.41

The program supports the following options:

zeta_zeros [-n n] [-count n] [-prec n] [-digits n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]

With -platt, Platt’s algorithm is used, which may be faster when computing many zeros of large index simultaneously.

bernoulli.c

This program benchmarks computing the nth Bernoulli number exactly:

> build/examples/bernoulli 1000000 -threads 8
cpu/wall(s): 27.227 5.836
virt/peak/res/peak(MB): 573.47 731.39 73.23 165.13

class_poly.c

This program benchmarks computing Hilbert class polynomials:

> build/examples/class_poly -1000004 -threads 8
cpu/wall(s): 6.932 1.478
virt/peak/res/peak(MB): 535.27 653.18 71.02 100.65
degree = 624, bits = -37823

hilbert_matrix.c

Given an input integer n, this program accurately computes the determinant of the n by n Hilbert matrix. Hilbert matrices are notoriously ill-conditioned: although the entries are close to unit magnitude, the determinant \(h_n\) decreases superexponentially (nearly as \(1/4^{n^2}\)) as a function of n. This program automatically doubles the working precision until the ball computed for \(h_n\) by arb_mat_det() does not contain zero.

Sample output:

$ build/examples/hilbert_matrix 200
prec=20: [+/- 1.32e-335]
prec=40: [+/- 1.63e-545]
prec=80: [+/- 1.30e-933]
prec=160: [+/- 3.62e-1926]
prec=320: [+/- 1.81e-4129]
prec=640: [+/- 3.84e-8838]
prec=1280: [2.955454297e-23924 +/- 8.29e-23935]
success!
cpu/wall(s): 8.494 8.513
virt/peak/res/peak(MB): 134.98 134.98 111.57 111.57

Called with -eig n, instead of computing the determinant, the program computes the smallest eigenvalue of the Hilbert matrix (in fact, it isolates all eigenvalues and prints the smallest eigenvalue):

$ build/examples/hilbert_matrix -eig 50
prec=20: nan
prec=40: nan
prec=80: nan
prec=160: nan
prec=320: nan
prec=640: [1.459157797e-74 +/- 2.49e-84]
success!
cpu/wall(s): 1.84 1.841
virt/peak/res/peak(MB): 33.97 33.97 10.51 10.51

keiper_li.c

Given an input integer n, this program rigorously computes numerical values of the Keiper-Li coefficients \(\lambda_0, \ldots, \lambda_n\). The Keiper-Li coefficients have the property that \(\lambda_n > 0\) for all \(n > 0\) if and only if the Riemann hypothesis is true. This program was used for the record computations described in [Joh2013] (the paper describes the algorithm in some more detail).

The program takes the following parameters:

keiper_li n [-prec prec] [-threads num_threads] [-out out_file]

The program prints the first and last few coefficients. It can optionally write all the computed data to a file. The working precision defaults to a value that should give all the coefficients to a few digits of accuracy, but can optionally be set higher (or lower). On a multicore system, using several threads results in faster execution.

Sample output:

> build/examples/keiper_li 1000 -threads 2
zeta: cpu/wall(s): 0.4 0.244
virt/peak/res/peak(MB): 167.98 294.69 5.09 7.43
log: cpu/wall(s): 0.03 0.038
gamma: cpu/wall(s): 0.02 0.016
binomial transform: cpu/wall(s): 0.01 0.018
0: -0.69314718055994530941723212145817656807550013436026 +/- 6.5389e-347
1: 0.023095708966121033814310247906495291621932127152051 +/- 2.0924e-345
2: 0.046172867614023335192864243096033943387066108314123 +/- 1.674e-344
3: 0.0692129735181082679304973488726010689942120263932 +/- 5.0219e-344
4: 0.092197619873060409647627872409439018065541673490213 +/- 2.0089e-343
5: 0.11510854289223549048622128109857276671349132303596 +/- 1.0044e-342
6: 0.13792766871372988290416713700341666356138966078654 +/- 6.0264e-342
7: 0.16063715965299421294040287257385366292282442046163 +/- 2.1092e-341
8: 0.18321945964338257908193931774721859848998098273432 +/- 8.4368e-341
9: 0.20565733870917046170289387421343304741236553410044 +/- 7.5931e-340
10: 0.22793393631931577436930340573684453380748385942738 +/- 7.5931e-339
991: 2.3196617961613367928373899656994682562101430813341 +/- 2.461e-11
992: 2.3203766239254884035349896518332550233162909717288 +/- 9.5363e-11
993: 2.321092061239733282811659116333262802034375592414 +/- 1.8495e-10
994: 2.3218073540188462110258826121503870112747188888893 +/- 3.5907e-10
995: 2.3225217392815185726928702951225314023773358152533 +/- 6.978e-10
996: 2.3232344485814623873333223609413703912358283071281 +/- 1.3574e-09
997: 2.3239447114886014522889542667580382034526509232475 +/- 2.6433e-09
998: 2.3246517591032700808344143240352605148856869322209 +/- 5.1524e-09
999: 2.3253548275861382119812576052060526988544993162101 +/- 1.0053e-08
1000: 2.3260531616864664574065046940832238158044982041872 +/- 3.927e-08
virt/peak/res/peak(MB): 170.18 294.69 7.51 7.51

logistic.c

This program computes the n-th iterate of the logistic map defined by \(x_{n+1} = r x_n (1 - x_n)\) where \(r\) and \(x_0\) are given. It takes the following parameters:

logistic n [x_0] [r] [digits]

The inputs \(x_0\), r and digits default to 0.5, 3.75 and 10 respectively. The computation is automatically restarted with doubled precision until the result is accurate to digits decimal digits.

Sample output:

> build/examples/logistic 10
Trying prec=64 bits...success!
cpu/wall(s): 0 0.001
x_10 = [0.6453672908 +/- 3.10e-11]

> build/examples/logistic 100
Trying prec=64 bits...ran out of accuracy at step 18
Trying prec=128 bits...ran out of accuracy at step 53
Trying prec=256 bits...success!
cpu/wall(s): 0 0
x_100 = [0.8882939923 +/- 1.60e-11]

> build/examples/logistic 10000
Trying prec=64 bits...ran out of accuracy at step 18
Trying prec=128 bits...ran out of accuracy at step 53
Trying prec=256 bits...ran out of accuracy at step 121
Trying prec=512 bits...ran out of accuracy at step 256
Trying prec=1024 bits...ran out of accuracy at step 525
Trying prec=2048 bits...ran out of accuracy at step 1063
Trying prec=4096 bits...ran out of accuracy at step 2139
Trying prec=8192 bits...ran out of accuracy at step 4288
Trying prec=16384 bits...ran out of accuracy at step 8584
Trying prec=32768 bits...success!
cpu/wall(s): 0.859 0.858
x_10000 = [0.8242048008 +/- 4.35e-11]

> build/examples/logistic 1234 0.1 3.99 30
Trying prec=64 bits...ran out of accuracy at step 0
Trying prec=128 bits...ran out of accuracy at step 10
Trying prec=256 bits...ran out of accuracy at step 76
Trying prec=512 bits...ran out of accuracy at step 205
Trying prec=1024 bits...ran out of accuracy at step 461
Trying prec=2048 bits...ran out of accuracy at step 974
Trying prec=4096 bits...success!
cpu/wall(s): 0.009 0.009
x_1234 = [0.256445391958651410579677945635 +/- 3.92e-31]

real_roots.c

This program isolates the roots of a function on the interval \((a,b)\) (where a and b are input as double-precision literals) using the routines in the arb_calc module. The program takes the following arguments:

real_roots function a b [-refine d] [-verbose] [-maxdepth n] [-maxeval n] [-maxfound n] [-prec n]

The following functions (specified by an integer code) are implemented:

  • 0 - \(Z(x)\) (Riemann-Siegel Z-function)

  • 1 - \(\sin(x)\)

  • 2 - \(\sin(x^2)\)

  • 3 - \(\sin(1/x)\)

  • 4 - \(\operatorname{Ai}(x)\) (Airy function)

  • 5 - \(\operatorname{Ai}'(x)\) (Airy function)

  • 6 - \(\operatorname{Bi}(x)\) (Airy function)

  • 7 - \(\operatorname{Bi}'(x)\) (Airy function)

The following options are available:

  • -refine d: If provided, after isolating the roots, attempt to refine the roots to d digits of accuracy using a few bisection steps followed by Newton’s method with adaptive precision, and then print them.

  • -verbose: Print more information.

  • -maxdepth n: Stop searching after n recursive subdivisions.

  • -maxeval n: Stop searching after approximately n function evaluations (the actual number evaluations will be a small multiple of this).

  • -maxfound n: Stop searching after having found n isolated roots.

  • -prec n: Working precision to use for the root isolation.

With function 0, the program isolates roots of the Riemann zeta function on the critical line, and guarantees that no roots are missed (see \(zeta_zeros.c\) for a far more efficient way to do this):

> build/examples/real_roots 0 0.0 50.0 -verbose
interval: [0, 50]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
found isolated root in: [14.111328125, 14.16015625]
found isolated root in: [20.99609375, 21.044921875]
found isolated root in: [25, 25.048828125]
found isolated root in: [30.419921875, 30.4443359375]
found isolated root in: [32.91015625, 32.958984375]
found isolated root in: [37.548828125, 37.59765625]
found isolated root in: [40.91796875, 40.966796875]
found isolated root in: [43.310546875, 43.3349609375]
found isolated root in: [47.998046875, 48.0224609375]
found isolated root in: [49.755859375, 49.7802734375]
---------------------------------------------------------------
Found roots: 10
Subintervals possibly containing undetected roots: 0
Function evaluations: 3058
cpu/wall(s): 0.202 0.202
virt/peak/res/peak(MB): 26.12 26.14 2.76 2.76

Find just one root and refine it to approximately 75 digits:

> build/examples/real_roots 0 0.0 50.0 -maxfound 1 -refine 75
interval: [0, 50]
maxdepth = 30, maxeval = 100000, maxfound = 1, low_prec = 30
refined root (0/8):
[14.134725141734693790457251983562470270784257115699243175685567460149963429809 +/- 2.57e-76]

---------------------------------------------------------------
Found roots: 1
Subintervals possibly containing undetected roots: 7
Function evaluations: 761
cpu/wall(s): 0.055 0.056
virt/peak/res/peak(MB): 26.12 26.14 2.75 2.75

Find the first few roots of an Airy function and refine them to 50 digits each:

> build/examples/real_roots 4 -10 0 -refine 50
interval: [-10, 0]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
refined root (0/6):
[-9.022650853340980380158190839880089256524677535156083 +/- 4.85e-52]

refined root (1/6):
[-7.944133587120853123138280555798268532140674396972215 +/- 1.92e-52]

refined root (2/6):
[-6.786708090071758998780246384496176966053882477393494 +/- 3.84e-52]

refined root (3/6):
[-5.520559828095551059129855512931293573797214280617525 +/- 1.05e-52]

refined root (4/6):
[-4.087949444130970616636988701457391060224764699108530 +/- 2.46e-52]

refined root (5/6):
[-2.338107410459767038489197252446735440638540145672388 +/- 1.48e-52]

---------------------------------------------------------------
Found roots: 6
Subintervals possibly containing undetected roots: 0
Function evaluations: 200
cpu/wall(s): 0.003 0.003
virt/peak/res/peak(MB): 26.12 26.14 2.24 2.24

Find roots of \(\sin(x^2)\) on \((0,100)\). The algorithm cannot isolate the root at \(x = 0\) (it is at the endpoint of the interval, and in any case a root of multiplicity higher than one). The failure is reported:

> build/examples/real_roots 2 0 100
interval: [0, 100]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 3183
Subintervals possibly containing undetected roots: 1
Function evaluations: 34058
cpu/wall(s): 0.032 0.032
virt/peak/res/peak(MB): 26.32 26.37 2.04 2.04

This does not miss any roots:

> build/examples/real_roots 2 1 100
interval: [1, 100]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 3183
Subintervals possibly containing undetected roots: 0
Function evaluations: 34039
cpu/wall(s): 0.023 0.023
virt/peak/res/peak(MB): 26.32 26.37 2.01 2.01

Looking for roots of \(\sin(1/x)\) on \((0,1)\), the algorithm finds many roots, but will never find all of them since there are infinitely many:

> build/examples/real_roots 3 0.0 1.0
interval: [0, 1]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 10198
Subintervals possibly containing undetected roots: 24695
Function evaluations: 202587
cpu/wall(s): 0.171 0.171
virt/peak/res/peak(MB): 28.39 30.38 4.05 4.05

Remark: the program always computes rigorous containing intervals for the roots, but the accuracy after refinement could be less than d digits.

poly_roots.c

This program finds the complex roots of an integer polynomial by calling arb_fmpz_poly_complex_roots(), which in turn calls acb_poly_find_roots() with increasing precision until the roots certainly have been isolated. The program takes the following arguments:

poly_roots [-refine d] [-print d] <poly>

Isolates all the complex roots of a polynomial with integer coefficients.

If -refine d is passed, the roots are refined to a relative tolerance
better than 10^(-d). By default, the roots are only computed to sufficient
accuracy to isolate them. The refinement is not currently done efficiently.

If -print d is passed, the computed roots are printed to d decimals.
By default, the roots are not printed.

The polynomial can be specified by passing the following as <poly>:

a <n>          Easy polynomial 1 + 2x + ... + (n+1)x^n
t <n>          Chebyshev polynomial T_n
u <n>          Chebyshev polynomial U_n
p <n>          Legendre polynomial P_n
c <n>          Cyclotomic polynomial Phi_n
s <n>          Swinnerton-Dyer polynomial S_n
b <n>          Bernoulli polynomial B_n
w <n>          Wilkinson polynomial W_n
e <n>          Taylor series of exp(x) truncated to degree n
m <n> <m>      The Mignotte-like polynomial x^n + (100x+1)^m, n > m
coeffs <c0 c1 ... cn>        c0 + c1 x + ... + cn x^n

Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3
for P_5(x)*T_6(x)*(1+2x+3x^2)

This finds the roots of the Wilkinson polynomial with roots at the positive integers 1, 2, …, 100:

> build/examples/poly_roots -print 15 w 100
computing squarefree factorization...
cpu/wall(s): 0.001 0.001
roots with multiplicity 1
searching for 100 roots, 100 deflated
prec=32: 0 isolated roots | cpu/wall(s): 0.098 0.098
prec=64: 0 isolated roots | cpu/wall(s): 0.247 0.247
prec=128: 0 isolated roots | cpu/wall(s): 0.498 0.497
prec=256: 0 isolated roots | cpu/wall(s): 0.713 0.713
prec=512: 100 isolated roots | cpu/wall(s): 0.104 0.105
done!
[1.00000000000000 +/- 3e-20]
[2.00000000000000 +/- 3e-19]
[3.00000000000000 +/- 1e-19]
[4.00000000000000 +/- 1e-19]
[5.00000000000000 +/- 1e-19]
...
[96.0000000000000 +/- 1e-17]
[97.0000000000000 +/- 1e-17]
[98.0000000000000 +/- 3e-17]
[99.0000000000000 +/- 3e-17]
[100.000000000000 +/- 3e-17]
cpu/wall(s): 1.664 1.664

This finds the roots of a Bernoulli polynomial which has both real and complex roots:

> build/examples/poly_roots -refine 100 -print 20 b 16
computing squarefree factorization...
cpu/wall(s): 0.001 0
roots with multiplicity 1
searching for 16 roots, 16 deflated
prec=32: 16 isolated roots | cpu/wall(s): 0.006 0.006
prec=64: 16 isolated roots | cpu/wall(s): 0.001 0.001
prec=128: 16 isolated roots | cpu/wall(s): 0.001 0.001
prec=256: 16 isolated roots | cpu/wall(s): 0.001 0.002
prec=512: 16 isolated roots | cpu/wall(s): 0.002 0.001
done!
[-0.94308706466055783383 +/- 2.02e-21]
[-0.75534059252067985752 +/- 2.70e-21]
[-0.24999757119077421009 +/- 4.27e-21]
[0.24999757152512726002 +/- 4.43e-21]
[0.75000242847487273998 +/- 4.43e-21]
[1.2499975711907742101 +/- 1.43e-20]
[1.7553405925206798575 +/- 1.74e-20]
[1.9430870646605578338 +/- 3.21e-20]
[-0.99509334829256233279 +/- 9.42e-22] + [0.44547958157103608805 +/- 3.59e-21]*I
[-0.99509334829256233279 +/- 9.42e-22] + [-0.44547958157103608805 +/- 3.59e-21]*I
[1.9950933482925623328 +/- 1.10e-20] + [0.44547958157103608805 +/- 3.59e-21]*I
[1.9950933482925623328 +/- 1.10e-20] + [-0.44547958157103608805 +/- 3.59e-21]*I
[-0.92177327714429290564 +/- 4.68e-21] + [-1.0954360955079385542 +/- 1.71e-21]*I
[-0.92177327714429290564 +/- 4.68e-21] + [1.0954360955079385542 +/- 1.71e-21]*I
[1.9217732771442929056 +/- 3.54e-20] + [1.0954360955079385542 +/- 1.71e-21]*I
[1.9217732771442929056 +/- 3.54e-20] + [-1.0954360955079385542 +/- 1.71e-21]*I
cpu/wall(s): 0.011 0.012

Roots are automatically separated by multiplicity by performing an initial squarefree factorization:

> build/examples/poly_roots -print 5 p 5 p 5 t 7 coeffs 1 5 10 10 5 1
computing squarefree factorization...
cpu/wall(s): 0 0
roots with multiplicity 1
searching for 6 roots, 3 deflated
prec=32: 3 isolated roots | cpu/wall(s): 0 0.001
done!
[-0.97493 +/- 2.10e-6]
[-0.78183 +/- 1.49e-6]
[-0.43388 +/- 3.75e-6]
[0.43388 +/- 3.75e-6]
[0.78183 +/- 1.49e-6]
[0.97493 +/- 2.10e-6]
roots with multiplicity 2
searching for 4 roots, 2 deflated
prec=32: 2 isolated roots | cpu/wall(s): 0 0
done!
[-0.90618 +/- 1.56e-7]
[-0.53847 +/- 6.91e-7]
[0.53847 +/- 6.91e-7]
[0.90618 +/- 1.56e-7]
roots with multiplicity 3
searching for 1 roots, 0 deflated
prec=32: 0 isolated roots | cpu/wall(s): 0 0
done!
0
roots with multiplicity 5
searching for 1 roots, 1 deflated
prec=32: 1 isolated roots | cpu/wall(s): 0 0
done!
-1.0000
cpu/wall(s): 0 0.001

zeta_zeros.c

This program finds the imaginary parts of consecutive nontrivial zeros of the Riemann zeta function by calling either acb_dirichlet_hardy_z_zeros() or acb_dirichlet_platt_local_hardy_z_zeros() depending on the height of the zeros and the number of zeros requested. The program takes the following arguments:

zeta_zeros [-n n] [-count n] [-prec n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]

> build/examples/zeta_zeros -n 1048449114 -count 2
1048449114      [388858886.0022851217767970582 +/- 7.46e-20]
1048449115      [388858886.0023936897027167201 +/- 7.59e-20]
cpu/wall(s): 0.255 0.255
virt/peak/res/peak(MB): 26.77 26.77 7.88 7.88

complex_plot.c

This program plots one of the predefined functions over a complex interval \([x_a, x_b] + [y_a, y_b]i\) using domain coloring, at a resolution of xn times yn pixels.

The program takes the parameters:

complex_plot [-range xa xb ya yb] [-size xn yn] [-color n] [-threads n] <func>

Defaults parameters are \([-10,10] + [-10,10]i\) and xn = yn = 512.

A color function can be selected with -color. Valid options are 0 (phase=hue, magnitude=brightness) and 1 (phase only, white-gold-black-blue-white counterclockwise).

The output is written to arbplot.ppm. If you have ImageMagick, run convert arbplot.ppm arbplot.png to get a PNG.

Function codes <func> are:

  • gamma - Gamma function

  • digamma - Digamma function

  • lgamma - Logarithmic gamma function

  • zeta - Riemann zeta function

  • erf - Error function

  • ai - Airy function Ai

  • bi - Airy function Bi

  • besselj - Bessel function \(J_0\)

  • bessely - Bessel function \(Y_0\)

  • besseli - Bessel function \(I_0\)

  • besselk - Bessel function \(K_0\)

  • modj - Modular j-function

  • modeta - Dedekind eta function

  • barnesg - Barnes G-function

  • agm - Arithmetic geometric mean

The function is just sampled at point values; no attempt is made to resolve small features by adaptive subsampling.

For example, the following plots the Riemann zeta function around a portion of the critical strip with imaginary part between 100 and 140:

> build/examples/complex_plot zeta -range -10 10 100 140 -size 256 512

For parallel computation on a multicore system, use -threads n.

lvalue.c

This program evaluates Dirichlet L-functions. It takes the following input:

> build/examples/lvalue
lvalue [-character q n] [-re a] [-im b] [-prec p] [-z] [-deflate] [-len l]

Print value of Dirichlet L-function at s = a+bi.
Default a = 0.5, b = 0, p = 53, (q, n) = (1, 0) (Riemann zeta)
[-z]       - compute Z(s) instead of L(s)
[-deflate] - remove singular term at s = 1
[-len l]   - compute l terms in Taylor series at s

Evaluating the Riemann zeta function and the Dirichlet beta function at \(s = 2\):

> build/examples/lvalue -re 2 -prec 128
L(s) = [1.64493406684822643647241516664602518922 +/- 4.37e-39]
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.05 2.05

> build/examples/lvalue -character 4 3 -re 2 -prec 128
L(s) = [0.91596559417721901505460351493238411077 +/- 7.86e-39]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31

Evaluating the L-function for character number 101 modulo 1009 at \(s = 1/2\) and \(s = 1\):

> build/examples/lvalue -character 1009 101
L(s) = [-0.459256562383872 +/- 5.24e-16] + [1.346937111206009 +/- 3.03e-16]*I
cpu/wall(s): 0.012 0.012
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

> build/examples/lvalue -character 1009 101 -re 1
L(s) = [0.657952586112728 +/- 6.02e-16] + [1.004145273214022 +/- 3.10e-16]*I
cpu/wall(s): 0.017 0.018
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

Computing the first few coefficients in the Laurent series of the Riemann zeta function at \(s = 1\):

> build/examples/lvalue -re 1 -deflate -len 8
L(s) = [0.577215664901532861 +/- 5.29e-19]
L'(s) = [0.072815845483676725 +/- 2.68e-19]
[x^2] L(s+x) = [-0.004845181596436159 +/- 3.87e-19]
[x^3] L(s+x) = [-0.000342305736717224 +/- 4.20e-19]
[x^4] L(s+x) = [9.6890419394471e-5 +/- 2.40e-19]
[x^5] L(s+x) = [-6.6110318108422e-6 +/- 4.51e-20]
[x^6] L(s+x) = [-3.316240908753e-7 +/- 3.85e-20]
[x^7] L(s+x) = [1.0462094584479e-7 +/- 7.78e-21]
cpu/wall(s): 0.003 0.004
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

Evaluating the Riemann zeta function near the first nontrivial root:

> build/examples/lvalue -re 0.5 -im 14.134725
L(s) = [1.76743e-8 +/- 1.93e-14] + [-1.110203e-7 +/- 2.84e-14]*I
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31

> build/examples/lvalue -z -re 14.134725 -prec 200
Z(s) = [-1.12418349839417533300111494358128257497862927935658e-7 +/- 4.62e-58]
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57

> build/examples/lvalue -z -re 14.134725 -len 4
Z(s) = [-1.124184e-7 +/- 7.00e-14]
Z'(s) = [0.793160414884 +/- 4.09e-13]
[x^2] Z(s+x) = [0.065164586492 +/- 5.39e-13]
[x^3] Z(s+x) = [-0.020707762705 +/- 5.37e-13]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57

lcentral.c

This program computes the central value \(L(1/2)\) for each Dirichlet L-function character modulo q for each q in the range qmin to qmax. Usage:

> build/examples/lcentral
Computes central values (s = 0.5) of Dirichlet L-functions.

usage: build/examples/lcentral [--quiet] [--check] [--prec <bits>] qmin qmax

The first few values:

> build/examples/lcentral 1 8
3,2: [0.48086755769682862618122006324 +/- 7.35e-30]
4,3: [0.66769145718960917665869092930 +/- 1.62e-30]
5,2: [0.76374788011728687822451215264 +/- 2.32e-30] + [0.21696476751886069363858659310 +/- 3.06e-30]*I
5,4: [0.23175094750401575588338366176 +/- 2.21e-30]
5,3: [0.76374788011728687822451215264 +/- 2.32e-30] + [-0.21696476751886069363858659310 +/- 3.06e-30]*I
7,3: [0.71394334376831949285993820742 +/- 1.21e-30] + [0.47490218277139938263745243935 +/- 4.52e-30]*I
7,2: [0.31008936259836766059195052534 +/- 5.29e-30] + [-0.07264193137017790524562171245 +/- 5.48e-30]*I
7,6: [1.14658566690370833367712697646 +/- 1.95e-30]
7,4: [0.31008936259836766059195052534 +/- 5.29e-30] + [0.07264193137017790524562171245 +/- 5.48e-30]*I
7,5: [0.71394334376831949285993820742 +/- 1.21e-30] + [-0.47490218277139938263745243935 +/- 4.52e-30]*I
8,5: [0.37369171291254730738158695002 +/- 4.01e-30]
8,3: [1.10042140952554837756713576997 +/- 3.37e-30]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.32 26.34 2.35 2.35

Testing a large q:

> build/examples/lcentral --quiet --check --prec 256 100000 100000
cpu/wall(s): 1.668 1.667
virt/peak/res/peak(MB): 35.67 46.66 11.67 22.61

It is conjectured that the central value never vanishes. Running with --check verifies that the interval certainly is nonzero. This can fail with insufficient precision:

> build/examples/lcentral --check --prec 15 100000 100000
100000,71877: [0.1 +/- 0.0772] + [+/- 0.136]*I
100000,90629: [2e+0 +/- 0.106] + [+/- 0.920]*I
100000,28133: [+/- 0.811] + [-2e+0 +/- 0.501]*I
100000,3141: [0.8 +/- 0.0407] + [-0.1 +/- 0.0243]*I
100000,53189: [4.0 +/- 0.0826] + [+/- 0.107]*I
100000,53253: [1.9 +/- 0.0855] + [-3.9 +/- 0.0681]*I
Value could be zero!
100000,53381: [+/- 0.0329] + [+/- 0.0413]*I
Aborted

integrals.c

This program computes integrals using acb_calc_integrate(). Invoking the program without parameters shows usage:

> build/examples/integrals
Compute integrals using acb_calc_integrate.
Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]

-i n       - compute integral n (0 <= n <= 23), or "-i all"
-prec p    - precision in bits (default p = 64)
-goal p    - approximate relative accuracy goal (default p)
-tol eps   - approximate absolute error goal (default 2^-p)
-twice     - run twice (to see overhead of computing nodes)
-heap      - use heap for subinterval queue
-verbose   - show information
-verbose2  - show more information
-deg n     - use quadrature degree up to n
-eval n    - limit number of function evaluations to n
-depth n   - limit subinterval queue size to n
-threads n - use parallel computation with n threads

Implemented integrals:
I0 = int_0^100 sin(x) dx
I1 = 4 int_0^1 1/(1+x^2) dx
I2 = 2 int_0^{inf} 1/(1+x^2) dx   (using domain truncation)
I3 = 4 int_0^1 sqrt(1-x^2) dx
I4 = int_0^8 sin(x+exp(x)) dx
I5 = int_1^101 floor(x) dx
I6 = int_0^1 |x^4+10x^3+19x^2-6x-6| exp(x) dx
I7 = 1/(2 pi i) int zeta(s) ds  (closed path around s = 1)
I8 = int_0^1 sin(1/x) dx  (slow convergence, use -heap and/or -tol)
I9 = int_0^1 x sin(1/x) dx  (slow convergence, use -heap and/or -tol)
I10 = int_0^10000 x^1000 exp(-x) dx
I11 = int_1^{1+1000i} gamma(x) dx
I12 = int_{-10}^{10} sin(x) + exp(-200-x^2) dx
I13 = int_{-1020}^{-1010} exp(x) dx  (use -tol 0 for relative error)
I14 = int_0^{inf} exp(-x^2) dx   (using domain truncation)
I15 = int_0^1 sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 dx
I16 = int_0^8 (exp(x)-floor(exp(x))) sin(x+exp(x)) dx  (use higher -eval)
I17 = int_0^{inf} sech(x) dx   (using domain truncation)
I18 = int_0^{inf} sech^3(x) dx   (using domain truncation)
I19 = int_0^1 -log(x)/(1+x) dx   (using domain truncation)
I20 = int_0^{inf} x exp(-x)/(1+exp(-x)) dx   (using domain truncation)
I21 = int_C wp(x)/x^(11) dx   (contour for 10th Laurent coefficient of Weierstrass p-function)
I22 = N(1000) = count zeros with 0 < t <= 1000 of zeta(s) using argument principle
I23 = int_0^{1000} W_0(x) dx
I24 = int_0^pi max(sin(x), cos(x)) dx
I25 = int_{-1}^1 erf(x/sqrt(0.0002)*0.5+1.5)*exp(-x) dx
I26 = int_{-10}^10 Ai(x) dx
I27 = int_0^10 (x-floor(x)-1/2) max(sin(x),cos(x)) dx
I28 = int_{-1-i}^{-1+i} sqrt(x) dx
I29 = int_0^{inf} exp(-x^2+ix) dx   (using domain truncation)
I30 = int_0^{inf} exp(-x) Ai(-x) dx   (using domain truncation)
I31 = int_0^pi x sin(x) / (1 + cos(x)^2) dx

A few examples:

build/examples/integrals -i 4
I4 = int_0^8 sin(x+exp(x)) dx ...
cpu/wall(s): 0.02 0.02
I4 = [0.34740017265725 +/- 3.95e-15]

> build/examples/integrals -i 3 -prec 333 -tol 1e-80
I3 = 4 int_0^1 sqrt(1-x^2) dx ...
cpu/wall(s): 0.024 0.024
I3 = [3.141592653589793238462643383279502884197169399375105820974944592307816406286209 +/- 4.24e-79]

> build/examples/integrals -i 9 -heap
I9 = int_0^1 x sin(1/x) dx  (slow convergence, use -heap and/or -tol) ...
cpu/wall(s): 0.019 0.018
I9 = [0.3785300 +/- 3.17e-8]

fpwrap.c

This program demonstrates calling the floating-point wrapper:

> build/examples/fpwrap
zeta(2) = 1.644934066848226
zeta(0.5 + 123i) = 0.006252861175594465 + 0.08206030514520983i

functions_benchmark.c

This program benchmarks performance of some standard functions.