.. _acb-dft: **acb_dft.h** -- Discrete Fourier transform =================================================================================== *Warning: the interfaces in this module are experimental and may change without notice.* All functions support aliasing. Let *G* be a finite abelian group, and `\chi` a character of *G*. For any map `f:G\to\mathbb C`, the discrete fourier transform `\hat f:\hat G\to \mathbb C` is defined by .. math:: \hat f(\chi) = \sum_{x\in G}\overline{\chi(x)}f(x) Note that by the inversion formula .. math:: \widehat{\hat f}(\chi) = \#G\times f(\chi^{-1}) it is straightforward to recover `f` from its DFT `\hat f`. Main DFT functions ------------------------------------------------------------------------------- If `G=\mathbb Z/n\mathbb Z`, we compute the DFT according to the usual convention .. math:: w_x = \sum_{y\bmod n} v_y e^{-\frac{2i \pi}nxy} .. function:: void acb_dft(acb_ptr w, acb_srcptr v, slong n, slong prec) Set *w* to the DFT of *v* of length *len*, using an automatic choice of algorithm. .. function:: void acb_dft_inverse(acb_ptr w, acb_srcptr v, slong n, slong prec) Compute the inverse DFT of *v* into *w*. If several computations are to be done on the same group, the FFT scheme should be reused. .. type:: acb_dft_pre_struct .. type:: acb_dft_pre_t Stores a fast DFT scheme on :math:`\mathbb Z/n\mathbb Z` as a recursive decomposition into simpler DFT with some tables of roots of unity. An *acb_dft_pre_t* is defined as an array of *acb_dft_pre_struct* of length 1, permitting it to be passed by reference. .. function:: void acb_dft_precomp_init(acb_dft_pre_t pre, slong len, slong prec) Initializes the fast DFT scheme of length *len*, using an automatic choice of algorithms depending on the factorization of *len*. The length *len* is stored as *pre->n*. .. function:: void acb_dft_precomp_clear(acb_dft_pre_t pre) Clears *pre*. .. function:: void acb_dft_precomp(acb_ptr w, acb_srcptr v, const acb_dft_pre_t pre, slong prec) Computes the DFT of the sequence *v* into *w* by applying the precomputed scheme *pre*. Both *v* and *w* must have length *pre->n*. .. function:: void acb_dft_inverse_precomp(acb_ptr w, acb_srcptr v, const acb_dft_pre_t pre, slong prec) Compute the inverse DFT of *v* into *w*. DFT on products ------------------------------------------------------------------------------- A finite abelian group is isomorphic to a product of cyclic components .. math:: G = \bigoplus_{i=1}^r \mathbb Z/n_i\mathbb Z Characters are product of component characters and the DFT reads .. math:: \hat f(x_1,\dots x_r) = \sum_{y_1\dots y_r} f(y_1,\dots y_r) e^{-2i \pi \sum\frac{x_i y_i}{n_i}} We assume that `f` is given by a vector of length `\prod n_i` corresponding to a lexicographic ordering of the values `y_1,\dots y_r`, and the computation returns the same indexing for values of `\hat f`. .. function:: void acb_dirichlet_dft_prod(acb_ptr w, acb_srcptr v, slong * cyc, slong num, slong prec) Computes the DFT on the group product of *num* cyclic components of sizes *cyc*. Assume the entries of *v* are indexed according to lexicographic ordering of the cyclic components. .. type:: acb_dft_prod_struct .. type:: acb_dft_prod_t Stores a fast DFT scheme on a product of cyclic groups. An *acb_dft_prod_t* is defined as an array of *acb_dft_prod_struct* of length 1, permitting it to be passed by reference. .. function:: void acb_dft_prod_init(acb_dft_prod_t t, slong * cyc, slong num, slong prec) Stores in *t* a DFT scheme for the product of *num* cyclic components whose sizes are given in the array *cyc*. .. function:: void acb_dft_prod_clear(acb_dft_prod_t t) Clears *t*. .. function:: void acb_dirichlet_dft_prod_precomp(acb_ptr w, acb_srcptr v, const acb_dft_prod_t prod, slong prec) Sets *w* to the DFT of *v*. Assume the entries are lexicographically ordered according to the product of cyclic groups initialized in *t*. Convolution ------------------------------------------------------------------------------- For functions `f` and `g` on `G` we consider the convolution .. math:: (f \star g)(x) = \sum_{y\in G} f(x-y)g(y) .. function:: void acb_dft_convol_naive(acb_ptr w, acb_srcptr f, acb_srcptr g, slong len, slong prec) .. function:: void acb_dft_convol_rad2(acb_ptr w, acb_srcptr f, acb_srcptr g, slong len, slong prec) .. function:: void acb_dft_convol(acb_ptr w, acb_srcptr f, acb_srcptr g, slong len, slong prec) Sets *w* to the convolution of *f* and *g* of length *len*. The *naive* version simply uses the definition. The *rad2* version embeds the sequence into a power of 2 length and uses the formula .. math:: \widehat{f \star g}(\chi) = \hat f(\chi)\hat g(\chi) to compute it using three radix 2 FFT. The default version uses radix 2 FFT unless *len* is a product of small primes where a non padded FFT is faster. FFT algorithms ------------------------------------------------------------------------------- Fast Fourier transform techniques allow to compute efficiently all values `\hat f(\chi)` by reusing common computations. Specifically, if `H\triangleleft G` is a subgroup of size `M` and index `[G:H]=m`, then writing `f_x(h)=f(xh)` the translate of `f` by representatives `x` of `G/H`, one has a decomposition .. math:: \hat f(\chi) = \sum_{x\in G/H} \overline{\chi(x)} \hat{f_x}(\chi_{H}) so that the DFT on `G` can be computed using `m` DFT on `H` (of appropriate translates of `f`), then `M` DFT on `G/H`, one for each restriction `\chi_{H}`. This decomposition can be done recursively. Naive algorithm ............................................................................... .. function:: void acb_dft_naive(acb_ptr w, acb_srcptr v, slong n, slong prec) Computes the DFT of *v* into *w*, where *v* and *w* have size *n*, using the naive `O(n^2)` algorithm. .. type:: acb_dft_naive_struct .. type:: acb_dft_naive_t .. function:: void acb_dft_naive_init(acb_dft_naive_t t, slong len, slong prec) .. function:: void acb_dft_naive_clear(acb_dft_naive_t t) Stores a table of roots of unity in *t*. The length *len* is stored as *t->n*. .. function:: void acb_dft_naive_precomp(acb_ptr w, acb_srcptr v, const acb_dft_naive_t t, slong prec) Sets *w* to the DFT of *v* of size *t->n*, using the naive algorithm data *t*. CRT decomposition ............................................................................... .. function:: void acb_dft_crt(acb_ptr w, acb_srcptr v, slong n, slong prec) Computes the DFT of *v* into *w*, where *v* and *w* have size *len*, using CRT to express `\mathbb Z/n\mathbb Z` as a product of cyclic groups. .. type:: acb_dft_crt_struct .. type:: acb_dft_crt_t .. function:: void acb_dft_crt_init(acb_dft_crt_t t, slong len, slong prec) .. function:: void acb_dft_crt_clear(acb_dft_crt_t t) Initialize a CRT decomposition of `\mathbb Z/n\mathbb Z` as a direct product of cyclic groups. The length *len* is stored as *t->n*. .. function:: void acb_dft_crt_precomp(acb_ptr w, acb_srcptr v, const acb_dft_crt_t t, slong prec) Sets *w* to the DFT of *v* of size *t->n*, using the CRT decomposition scheme *t*. Cooley-Tukey decomposition ............................................................................... .. function:: void acb_dft_cyc(acb_ptr w, acb_srcptr v, slong n, slong prec) Computes the DFT of *v* into *w*, where *v* and *w* have size *n*, using each prime factor of `m` of `n` to decompose with the subgroup `H=m\mathbb Z/n\mathbb Z`. .. type:: acb_dft_cyc_struct .. type:: acb_dft_cyc_t .. function:: void acb_dft_cyc_init(acb_dft_cyc_t t, slong len, slong prec) .. function:: void acb_dft_cyc_clear(acb_dft_cyc_t t) Initialize a decomposition of `\mathbb Z/n\mathbb Z` into cyclic subgroups. The length *len* is stored as *t->n*. .. function:: void acb_dft_cyc_precomp(acb_ptr w, acb_srcptr v, const acb_dft_cyc_t t, slong prec) Sets *w* to the DFT of *v* of size *t->n*, using the cyclic decomposition scheme *t*. Radix 2 decomposition ............................................................................... .. function:: void acb_dft_rad2(acb_ptr w, acb_srcptr v, int e, slong prec) Computes the DFT of *v* into *w*, where *v* and *w* have size `2^e`, using a radix 2 FFT. .. function:: void acb_dft_inverse_rad2(acb_ptr w, acb_srcptr v, int e, slong prec) Computes the inverse DFT of *v* into *w*, where *v* and *w* have size `2^e`, using a radix 2 FFT. .. type:: acb_dft_rad2_struct .. type:: acb_dft_rad2_t .. function:: void acb_dft_rad2_init(acb_dft_rad2_t t, int e, slong prec) .. function:: void acb_dft_rad2_clear(acb_dft_rad2_t t) Initialize and clear a radix 2 FFT of size `2^e`, stored as *t->n*. .. function:: void acb_dft_rad2_precomp(acb_ptr w, acb_srcptr v, const acb_dft_rad2_t t, slong prec) Sets *w* to the DFT of *v* of size *t->n*, using the precomputed radix 2 scheme *t*. Bluestein transform ............................................................................... .. function:: void acb_dft_bluestein(acb_ptr w, acb_srcptr v, slong n, slong prec) Computes the DFT of *v* into *w*, where *v* and *w* have size *n*, by conversion to a radix 2 one using Bluestein's convolution trick. .. type:: acb_dft_bluestein_struct .. type:: acb_dft_bluestein_t Stores a Bluestein scheme for some length *n* : that is a :type:`acb_dft_rad2_t` of size `2^e \geq 2n-1` and a size *n* array of convolution factors. .. function:: void acb_dft_bluestein_init(acb_dft_bluestein_t t, slong len, slong prec) .. function:: void acb_dft_bluestein_clear(acb_dft_bluestein_t t) Initialize and clear a Bluestein scheme to compute DFT of size *len*. .. function:: void acb_dft_bluestein_precomp(acb_ptr w, acb_srcptr v, const acb_dft_bluestein_t t, slong prec) Sets *w* to the DFT of *v* of size *t->n*, using the precomputed Bluestein scheme *t*.