.. _acb-dirichlet: **acb_dirichlet.h** -- Dirichlet L-functions, Riemann zeta and related functions =================================================================================== *Warning: the interfaces in this module are experimental and may change without notice.* This module allows working with values of Dirichlet characters, Dirichlet L-functions, and related functions. Working with Dirichlet characters is documented in :ref:`dirichlet`. A Dirichlet L-function is the analytic continuation of an L-series .. math :: L(s,\chi) = \sum_{k=1}^\infty \frac{\chi(k)}{k^s} where `\chi(k)` is a Dirichlet character. The code in other modules for computing the Riemann zeta function, Hurwitz zeta function and polylogarithm will possibly be migrated to this module in the future. Roots of unity ------------------------------------------------------------------------------- .. type:: acb_dirichlet_roots_struct .. type:: acb_dirichlet_roots_t .. function:: void acb_dirichlet_roots_init(acb_dirichlet_roots_t roots, ulong n, slong num, slong prec) Initializes *roots* with precomputed data for fast evaluation of roots of unity `e^{2\pi i k/n}` of a fixed order *n*. The precomputation is optimized for *num* evaluations. For very small *num*, only the single root `e^{2\pi i/n}` will be precomputed, which can then be raised to a power. For small *prec* and large *n*, this method might even skip precomputing this single root if it estimates that evaluating roots of unity from scratch will be faster than powering. If *num* is large enough, the whole set of roots in the first quadrant will be precomputed at once. However, this is automatically avoided for large *n* if too much memory would be used. For intermediate *num*, baby-step giant-step tables are computed. .. function:: void acb_dirichlet_roots_clear(acb_dirichlet_roots_t roots) Clears the structure. .. function:: void acb_dirichlet_root(acb_t res, const acb_dirichlet_roots_t roots, ulong k, slong prec) Computes `e^{2\pi i k/n}`. Truncated L-series and power sums ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_powsum_term(acb_ptr res, arb_t log_prev, ulong * prev, const acb_t s, ulong k, int integer, int critical_line, slong len, slong prec) Sets *res* to `k^{-(s+x)}` as a power series in *x* truncated to length *len*. The flags *integer* and *critical_line* respectively specify optimizing for *s* being an integer or having real part 1/2. On input *log_prev* should contain the natural logarithm of the integer at *prev*. If *prev* is close to *k*, this can be used to speed up computations. If `\log(k)` is computed internally by this function, then *log_prev* is overwritten by this value, and the integer at *prev* is overwritten by *k*, allowing *log_prev* to be recycled for the next term when evaluating a power sum. .. function:: void acb_dirichlet_powsum_sieved(acb_ptr res, const acb_t s, ulong n, slong len, slong prec) Sets *res* to `\sum_{k=1}^n k^{-(s+x)}` as a power series in *x* truncated to length *len*. This function stores a table of powers that have already been calculated, computing `(ij)^r` as `i^r j^r` whenever `k = ij` is composite. As a further optimization, it groups all even `k` and evaluates the sum as a polynomial in `2^{-(s+x)}`. This scheme requires about `n / \log n` powers, `n / 2` multiplications, and temporary storage of `n / 6` power series. Due to the extra power series multiplications, it is only faster than the naive algorithm when *len* is small. .. function:: void acb_dirichlet_powsum_smooth(acb_ptr res, const acb_t s, ulong n, slong len, slong prec) Sets *res* to `\sum_{k=1}^n k^{-(s+x)}` as a power series in *x* truncated to length *len*. This function performs partial sieving by adding multiples of 5-smooth *k* into separate buckets. Asymptotically, this requires computing 4/15 of the powers, which is slower than *sieved*, but only requires logarithmic extra space. It is also faster for large *len*, since most power series multiplications are traded for additions. A slightly bigger gain for larger *n* could be achieved by using more small prime factors, at the expense of space. Riemann zeta function ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_zeta(acb_t res, const acb_t s, slong prec) Computes `\zeta(s)` using an automatic choice of algorithm. .. function:: void acb_dirichlet_zeta_jet(acb_t res, const acb_t s, int deflate, slong len, slong prec) Computes the first *len* terms of the Taylor series of the Riemann zeta function at *s*. If *deflate* is nonzero, computes the deflated function `\zeta(s) - 1/(s-1)` instead. .. function:: void acb_dirichlet_zeta_bound(mag_t res, const acb_t s) Computes an upper bound for `|\zeta(s)|` quickly. On the critical strip (and slightly outside of it), formula (43.3) in [Rad1973]_ is used. To the right, evaluating at the real part of *s* gives a trivial bound. To the left, the functional equation is used. .. function:: void acb_dirichlet_eta(acb_t res, const acb_t s, slong prec) Sets *res* to the Dirichlet eta function `\eta(s) = \sum_{k=1}^{\infty} (-1)^{k+1} / k^s = (1-2^{1-s}) \zeta(s)`, also known as the alternating zeta function. Note that the alternating character `\{1,-1\}` is not itself a Dirichlet character. .. function:: void acb_dirichlet_xi(acb_t res, const acb_t s, slong prec) Sets *res* to the Riemann xi function `\xi(s) = \frac{1}{2} s (s-1) \pi^{-s/2} \Gamma(\frac{1}{2} s) \zeta(s)`. The functional equation for xi is `\xi(1-s) = \xi(s)`. Riemann-Siegel formula ------------------------------------------------------------------------------- The Riemann-Siegel (RS) formula is implemented closely following J. Arias de Reyna [Ari2011]_. For `s = \sigma + it` with `t > 0`, the expansion takes the form .. math :: \zeta(s) = \mathcal{R}(s) + X(s) \overline{\mathcal{R}}(1-s), \quad X(s) = \pi^{s-1/2} \frac{\Gamma((1-s)/2)}{\Gamma(s/2)} where .. math :: \mathcal{R}(s) = \sum_{k=1}^N \frac{1}{k^s} + (-1)^{N-1} U a^{-\sigma} \left[ \sum_{k=0}^K \frac{C_k(p)}{a^k} + RS_K \right] .. math :: U = \exp\left(-i\left[ \frac{t}{2} \log\left(\frac{t}{2\pi}\right)-\frac{t}{2}-\frac{\pi}{8} \right]\right), \quad a = \sqrt{\frac{t}{2\pi}}, \quad N = \lfloor a \rfloor, \quad p = 1-2(a-N). The coefficients `C_k(p)` in the asymptotic part of the expansion are expressed in terms of certain auxiliary coefficients `d_j^{(k)}` and `F^{(j)}(p)`. Because of artificial discontinuities, *s* should be exact inside the evaluation. .. function:: void acb_dirichlet_zeta_rs_f_coeffs(acb_ptr f, const arb_t p, slong n, slong prec) Computes the coefficients `F^{(j)}(p)` for `0 \le j < n`. Uses power series division. This method breaks down when `p = \pm 1/2` (which is not problem if *s* is an exact floating-point number). .. function:: void acb_dirichlet_zeta_rs_d_coeffs(arb_ptr d, const arb_t sigma, slong k, slong prec) Computes the coefficients `d_j^{(k)}` for `0 \le j \le \lfloor 3k/2 \rfloor + 1`. On input, the array *d* must contain the coefficients for `d_j^{(k-1)}` unless `k = 0`, and these coefficients will be updated in-place. .. function:: void acb_dirichlet_zeta_rs_bound(mag_t err, const acb_t s, slong K) Bounds the error term `RS_K` following Theorem 4.2 in Arias de Reyna. .. function:: void acb_dirichlet_zeta_rs_r(acb_t res, const acb_t s, slong K, slong prec) Computes `\mathcal{R}(s)` in the upper half plane. Uses precisely *K* asymptotic terms in the RS formula if this input parameter is positive; otherwise chooses the number of terms automatically based on *s* and the precision. .. function:: void acb_dirichlet_zeta_rs(acb_t res, const acb_t s, slong K, slong prec) Computes `\zeta(s)` using the Riemann-Siegel formula. Uses precisely *K* asymptotic terms in the RS formula if this input parameter is positive; otherwise chooses the number of terms automatically based on *s* and the precision. .. function:: void acb_dirichlet_zeta_jet_rs(acb_t res, const acb_t s, slong len, slong prec) Computes the first *len* terms of the Taylor series of the Riemann zeta function at *s* using the Riemann siegel formula. This function currently only supports *len* = 1 or *len* = 2. A finite difference is used to compute the first derivative. Hurwitz zeta function ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_hurwitz(acb_t res, const acb_t s, const acb_t a, slong prec) Computes the Hurwitz zeta function `\zeta(s, a)`. This function automatically delegates to the code for the Riemann zeta function when `a = 1`. Some other special cases may also be handled by direct formulas. In general, Euler-Maclaurin summation is used. Hurwitz zeta function precomputation ------------------------------------------------------------------------------- .. type:: acb_dirichlet_hurwitz_precomp_struct .. type:: acb_dirichlet_hurwitz_precomp_t .. function:: void acb_dirichlet_hurwitz_precomp_init(acb_dirichlet_hurwitz_precomp_t pre, const acb_t s, int deflate, ulong A, ulong K, ulong N, slong prec) Precomputes a grid of Taylor polynomials for fast evaluation of `\zeta(s,a)` on `a \in (0,1]` with fixed *s*. *A* is the initial shift to apply to *a*, *K* is the number of Taylor terms, *N* is the number of grid points. The precomputation requires *NK* evaluations of the Hurwitz zeta function, and each subsequent evaluation requires *2K* simple arithmetic operations (polynomial evaluation) plus *A* powers. As *K* grows, the error is at most `O(1/(2AN)^K)`. This function can be called with *A* set to zero, in which case no Taylor series precomputation is performed. This means that evaluation will be identical to calling :func:`acb_dirichlet_hurwitz` directly. Otherwise, we require that *A*, *K* and *N* are all positive. For a finite error bound, we require `K+\operatorname{re}(s) > 1`. To avoid an initial "bump" that steals precision and slows convergence, *AN* should be at least roughly as large as `|s|`, e.g. it is a good idea to have at least `AN > 0.5 |s|`. If *deflate* is set, the deflated Hurwitz zeta function is used, removing the pole at `s = 1`. .. function:: void acb_dirichlet_hurwitz_precomp_init_num(acb_dirichlet_hurwitz_precomp_t pre, const acb_t s, int deflate, double num_eval, slong prec) Initializes *pre*, choosing the parameters *A*, *K*, and *N* automatically to minimize the cost of *num_eval* evaluations of the Hurwitz zeta function at argument *s* to precision *prec*. .. function:: void acb_dirichlet_hurwitz_precomp_clear(acb_dirichlet_hurwitz_precomp_t pre) Clears the precomputed data. .. function:: void acb_dirichler_hurwitz_precomp_choose_param(ulong * A, ulong * K, ulong * N, const acb_t s, double num_eval, slong prec) Chooses precomputation parameters *A*, *K* and *N* to minimize the cost of *num_eval* evaluations of the Hurwitz zeta function at argument *s* to precision *prec*. If it is estimated that evaluating each Hurwitz zeta function from scratch would be better than performing a precomputation, *A*, *K* and *N* are all set to 0. .. function:: void acb_dirichlet_hurwitz_precomp_bound(mag_t res, const acb_t s, ulong A, ulong K, ulong N) Computes an upper bound for the truncation error (not accounting for roundoff error) when evaluating `\zeta(s,a)` with precomputation parameters *A*, *K*, *N*, assuming that `0 < a \le 1`. For details, see :ref:`algorithms_hurwitz`. .. function:: void acb_dirichlet_hurwitz_precomp_eval(acb_t res, const acb_dirichlet_hurwitz_precomp_t pre, ulong p, ulong q, slong prec) Evaluates `\zeta(s,p/q)` using precomputed data, assuming that `0 < p/q \le 1`. Stieltjes constants ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_stieltjes(acb_t res, const fmpz_t n, const acb_t a, slong prec) Given a nonnegative integer *n*, sets *res* to the generalized Stieltjes constant `\gamma_n(a)` which is the coefficient in the Laurent series of the Hurwitz zeta function at the pole .. math :: \zeta(s,a) = \frac{1}{s-1} + \sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n(a) (s-1)^n. With `a = 1`, this gives the ordinary Stieltjes constants for the Riemann zeta function. This function uses an integral representation if `a = 1` to permit fast computation for extremely large *n*. If `a \ne 1` (or *n* is moderate and the precision is high), it falls back to evaluating the Hurwitz zeta function of a power series and reading off the last coefficient. If `a \ne 1`, large *n* will be extremely slow. Also note that for computing a range of values `\gamma_0(a), \ldots, \gamma_n(a)`, it is generally more efficient to evaluate the Hurwitz zeta function series expansion once at `s = 1` than to call this function repeatedly. Dirichlet character evaluation ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_chi(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, ulong n, slong prec) Sets *res* to `\chi(n)`, the value of the Dirichlet character *chi* at the integer *n*. .. function:: void acb_dirichlet_chi_vec(acb_ptr v, const dirichlet_group_t G, const dirichlet_char_t chi, slong nv, slong prec) Compute the *nv* first Dirichlet values. .. function:: void acb_dirichlet_pairing(acb_t res, const dirichlet_group_t G, ulong m, ulong n, slong prec) .. function:: void acb_dirichlet_pairing_char(acb_t res, const dirichlet_group_t G, const dirichlet_char_t a, const dirichlet_char_t b, slong prec) Sets *res* to the value of the Dirichlet pairing `\chi(m,n)` at numbers `m` and `n`. The second form takes two characters as input. Dirichlet character Gauss, Jacobi and theta sums ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_gauss_sum_naive(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_factor(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_order2(acb_t res, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_theta(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_ui(acb_t res, const dirichlet_group_t G, ulong a, slong prec) Sets *res* to the Gauss sum .. math:: G_q(a) = \sum_{x \bmod q} \chi_q(a, x) e^{\frac{2i\pi x}q} - the *naive* version computes the sum as defined. - the *factor* version writes it as a product of local Gauss sums by chinese remainder theorem. - the *order2* version assumes *chi* is real and primitive and returns `i^p\sqrt q` where `p` is the parity of `\chi`. - the *theta* version assumes that *chi* is primitive to obtain the Gauss sum by functional equation of the theta series at `t=1`. An abort will be raised if the theta series vanishes at `t=1`. Only 4 exceptional characters of conductor 300 and 600 are known to have this particularity, and none with primepower modulus. - the default version automatically combines the above methods. - the *ui* version only takes the Conrey number *a* as parameter. .. function:: void acb_dirichlet_jacobi_sum_naive(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_factor(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_gauss(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_ui(acb_t res, const dirichlet_group_t G, ulong a, ulong b, slong prec) Computes the Jacobi sum .. math:: J_q(a,b) = \sum_{x \bmod q} \chi_q(a, x)\chi_q(b, 1-x) - the *naive* version computes the sum as defined. - the *factor* version writes it as a product of local Jacobi sums - the *gauss* version assumes `ab` is primitive and uses the formula `J_q(a,b)G_q(ab) = G_q(a)G_q(b)` - the default version automatically combines the above methods. - the *ui* version only takes the Conrey numbers *a* and *b* as parameters. .. function:: void acb_dirichlet_chi_theta_arb(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, const arb_t t, slong prec) .. function:: void acb_dirichlet_ui_theta_arb(acb_t res, const dirichlet_group_t G, ulong a, const arb_t t, slong prec) Compute the theta series `\Theta_q(a,t)` for real argument `t>0`. Beware that if `t<1` the functional equation .. math:: t \theta(a,t) = \epsilon(\chi) \theta\left(\frac1a, \frac1t\right) should be used, which is not done automatically (to avoid recomputing the Gauss sum). We call *theta series* of a Dirichlet character the quadratic series .. math:: \Theta_q(a) = \sum_{n\geq 0} \chi_q(a, n) n^p x^{n^2} where `p` is the parity of the character `\chi_q(a,\cdot)`. For `\Re(t)>0` we write `x(t)=\exp(-\frac{\pi}{N}t^2)` and define .. math:: \Theta_q(a,t) = \sum_{n\geq 0} \chi_q(a, n) x(t)^{n^2}. .. function:: ulong acb_dirichlet_theta_length(ulong q, const arb_t t, slong prec) Compute the number of terms to be summed in the theta series of argument *t* so that the tail is less than `2^{-\mathrm{prec}}`. .. function:: void acb_dirichlet_qseries_powers_naive(acb_t res, const arb_t x, int p, const ulong * a, const acb_dirichlet_powers_t z, slong len, slong prec) .. function:: void acb_dirichlet_qseries_powers_smallorder(acb_t res, const arb_t x, int p, const ulong * a, const acb_dirichlet_powers_t z, slong len, slong prec) Compute the series `\sum n^p z^{a_n} x^{n^2}` for exponent list *a*, precomputed powers *z* and parity *p* (being 0 or 1). The *naive* version sums the series as defined, while the *smallorder* variant evaluates the series on the quotient ring by a cyclotomic polynomial before evaluating at the root of unity, ignoring its argument *z*. Discrete Fourier transforms (DFT) ------------------------------------------------------------------------------- If `f` is a function `\mathbb Z/q\mathbb Z\to \mathbb C`, its discrete Fourier transform is the function defined on Dirichlet characters mod `q` by .. math:: \hat f(\chi) = \sum_{x\mod q}\overline{\chi(x)}f(x) See the :ref:`acb-dft` module. Here we take advantage of the Conrey isomorphism `G \to \hat G` to consider the Fourier transform on Conrey labels as .. math:: g(a) = \sum_{b\bmod q}\overline{\chi_q(a,b)}f(b) .. function:: void acb_dirichlet_dft_conrey(acb_ptr w, acb_srcptr v, const dirichlet_group_t G, slong prec) Compute the DFT of *v* using Conrey indices. This function assumes *v* and *w* are vectors of size *G->phi_q*, whose values correspond to a lexicographic ordering of Conrey logs (as obtained using :func:`dirichlet_char_next` or by :func:`dirichlet_char_index`). For example, if `q=15`, the Conrey elements are stored in following order ======= ============= ===================== index log = [e,f] number = 7^e 11^f ======= ============= ===================== 0 [0, 0] 1 1 [0, 1] 7 2 [0, 2] 4 3 [0, 3] 13 4 [0, 4] 1 5 [1, 0] 11 6 [1, 1] 2 7 [1, 2] 14 8 [1, 3] 8 9 [1, 4] 11 ======= ============= ===================== .. function:: void acb_dirichlet_dft(acb_ptr w, acb_srcptr v, const dirichlet_group_t G, slong prec) Compute the DFT of *v* using Conrey numbers. This function assumes *v* and *w* are vectors of size *G->q*. All values at index not coprime to *G->q* are ignored. Dirichlet L-functions ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_root_number_theta(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_root_number(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Sets *res* to the root number `\epsilon(\chi)` for a primitive character *chi*, which appears in the functional equation (where `p` is the parity of `\chi`): .. math:: \left(\frac{q}{\pi}\right)^{\frac{s+p}2}\Gamma\left(\frac{s+p}2\right) L(s, \chi) = \epsilon(\chi) \left(\frac{q}{\pi}\right)^{\frac{1-s+p}2}\Gamma\left(\frac{1-s+p}2\right) L(1 - s, \overline\chi) - The *theta* variant uses the evaluation at `t=1` of the Theta series. - The default version computes it via the gauss sum. .. function:: void acb_dirichlet_l_hurwitz(acb_t res, const acb_t s, const acb_dirichlet_hurwitz_precomp_t precomp, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Computes `L(s,\chi)` using decomposition in terms of the Hurwitz zeta function .. math:: L(s,\chi) = q^{-s}\sum_{k=1}^q \chi(k) \,\zeta\!\left(s,\frac kq\right). If `s = 1` and `\chi` is non-principal, the deflated Hurwitz zeta function is used to avoid poles. If *precomp* is *NULL*, each Hurwitz zeta function value is computed directly. If a pre-initialized *precomp* object is provided, this will be used instead to evaluate the Hurwitz zeta function. .. function:: void acb_dirichlet_l_euler_product(acb_t res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void _acb_dirichlet_euler_product_real_ui(arb_t res, ulong s, const signed char * chi, int mod, int reciprocal, slong prec) Computes `L(s,\chi)` directly using the Euler product. This is efficient if *s* has large positive real part. As implemented, this function only gives a finite result if `\operatorname{re}(s) \ge 2`. An error bound is computed via :func:`mag_hurwitz_zeta_uiui`. If *s* is complex, replace it with its real part. Since .. math :: \frac{1}{L(s,\chi)} = \prod_{p} \left(1 - \frac{\chi(p)}{p^s}\right) = \sum_{k=1}^{\infty} \frac{\mu(k)\chi(k)}{k^s} and the truncated product gives all smooth-index terms in the series, we have .. math :: \left|\prod_{p < N} \left(1 - \frac{\chi(p)}{p^s}\right) - \frac{1}{L(s,\chi)}\right| \le \sum_{k=N}^{\infty} \frac{1}{k^s} = \zeta(s,N). The underscore version specialized for integer *s* assumes that `\chi` is a real Dirichlet character given by the explicit list *chi* of character values at 0, 1, ..., *mod* - 1. If *reciprocal* is set, it computes `1 / L(s,\chi)` (this is faster if the reciprocal can be used directly). .. function:: void acb_dirichlet_l(acb_t res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Computes `L(s,\chi)` using a default choice of algorithm. .. function:: void acb_dirichlet_l_vec_hurwitz(acb_ptr res, const acb_t s, const acb_dirichlet_hurwitz_precomp_t precomp, const dirichlet_group_t G, slong prec) Compute all values `L(s,\chi)` for `\chi` mod `q`, using the Hurwitz zeta function and a discrete Fourier transform. The output *res* is assumed to have length *G->phi_q* and values are stored by lexicographically ordered Conrey logs. See :func:`acb_dirichlet_dft_conrey`. If *precomp* is *NULL*, each Hurwitz zeta function value is computed directly. If a pre-initialized *precomp* object is provided, this will be used instead to evaluate the Hurwitz zeta function. .. function:: void acb_dirichlet_l_jet(acb_ptr res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) Computes the Taylor expansion of `L(s,\chi)` to length *len*, i.e. `L(s), L'(s), \ldots, L^{(len-1)}(s) / (len-1)!`. If *deflate* is set, computes the expansion of .. math :: L(s,\chi) - \frac{\sum_{k=1}^q \chi(k)}{(s-1)q} instead. If *chi* is a principal character, then this has the effect of subtracting the pole with residue `\sum_{k=1}^q \chi(k) = \phi(q) / q` that is located at `s = 1`. In particular, when evaluated at `s = 1`, this gives the regular part of the Laurent expansion. When *chi* is non-principal, *deflate* has no effect. .. function:: void _acb_dirichlet_l_series(acb_ptr res, acb_srcptr s, slong slen, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) .. function:: void acb_dirichlet_l_series(acb_poly_t res, const acb_poly_t s, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) Sets *res* to the power series `L(s,\chi)` where *s* is a given power series, truncating the result to length *len*. See :func:`acb_dirichlet_l_jet` for the meaning of the *deflate* flag. Hardy Z-functions ------------------------------------------------------------------------------- For convenience, setting both *G* and *chi* to *NULL* in the following methods selects the Riemann zeta function. Currently, these methods require *chi* to be a primitive character. .. function:: void acb_dirichlet_hardy_theta(acb_ptr res, const acb_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Computes the phase function used to construct the Z-function. We have .. math :: \theta(t) = -\frac{t}{2} \log(\pi/q) - \frac{i \log(\epsilon)}{2} + \frac{\log \Gamma((s+\delta)/2) - \log \Gamma((1-s+\delta)/2)}{2i} where `s = 1/2+it`, `\delta` is the parity of *chi*, and `\epsilon` is the root number as computed by :func:`acb_dirichlet_root_number`. The first *len* terms in the Taylor expansion are written to the output. .. function:: void acb_dirichlet_hardy_z(acb_t res, const acb_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Computes the Hardy Z-function, also known as the Riemann-Siegel Z-function `Z(t) = e^{i \theta(t)} L(1/2+it)`, which is real-valued for real *t*. The first *len* terms in the Taylor expansion are written to the output. .. function:: void _acb_dirichlet_hardy_theta_series(acb_ptr res, acb_srcptr t, slong tlen, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) .. function:: void acb_dirichlet_hardy_theta_series(acb_poly_t res, const acb_poly_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Sets *res* to the power series `\theta(t)` where *t* is a given power series, truncating the result to length *len*. .. function:: void _acb_dirichlet_hardy_z_series(acb_ptr res, acb_srcptr t, slong tlen, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) .. function:: void acb_dirichlet_hardy_z_series(acb_poly_t res, const acb_poly_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Sets *res* to the power series `Z(t)` where *t* is a given power series, truncating the result to length *len*.